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The purpose of this study is to generalize the experimental method for deciding 
when a fluid motion can be considered turbulent. The rationale advanced for 
processing a transducer signal, which indicates the intermittent nature of 
a turbulent field, is given a probabilistic outlook. In  addition an improved de- 
tector function is introduced which uses information from longitudinal and 
lateral fluctuation components. 

1. Introduction 
The means by which a turbulent medium propagates into a non-turbulent 

fluid is a particularly interesting and challenging problem. One can easily 
appreciate the macroscopic features of this process. The large-scale eddies, 
observable at the free edges of turbulent shear flows, are an obvious mechanism 
for the lateral growth of the motion and they have been found to play a central 
role in the entrainment of free-stream fluid (Townsend 1970). At the same time 
however, any complete explanation must include a description of the small- 
scale activity: the effective digestion or contamination of the non-turbulent 
fluid which takes place through the turbulent/non-turbulent interface. There 
have been only a few attempts at  a theoretical explanation of this problem 
(Phillips 1972; Corrsin & Kistler 1955; Townsend 1970). This is partly a con- 
sequence of a lack of detailed knowledge of the physics of the flow at the inter- 
face. Such experimental observations are difficulk to make accurately sinoe 
a precise specification of the instantaneous position of the interface is a pre- 
requisite. 

Most previous investigations have been concerned with identifying the gross 
features of the outer motion only and the influence of the turbulentlnon- 
turbulent character upon the flow has been masked. Corrsin (1943) was the first 
to report detection of these turbulent/non-turbulent patterns, from his examina- 
tion of the axisymmetric jet. The phenomenon was termed intermittency and the 
first measurement of the intermittency fraction was made by Townsend (1948), 
for t.he turbulent wake generated by a circular cylinder. Assuming that within 
turbulent zones of the flow the fine-scale skructure was homogeneous, Townsend 
compared the flatness factor of the derivative of the streamwise velocity fluctua- 
tions at  points throughout the outer regions of the wake with that determined 
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on the axis. The ratio of the terms thus gave the intermittency factor directly. 
Townsend (1949) also introduced a more obvious method using an analog 
technique which counted periods of time when the turbulent fluctuation quantity 
(or a variable associated with i t)  could be judged non-zero. This was followed 
by the studies by Corrsin & Kist-ler (1955), who examined the round jet, plane 
wake and rough-walled boundary layer, essentially using Townsend’s methods, 
and by Klebanoff (1955), who inspected the same variables from film strip 
records for the boundary layer. 

Intermittency measurements have since then been made in a variety of flows 
using essentially similar methods. The most comprehensive sets of data are those 
supplied by Kovasznay, Kibens & Blackwelder (1970) for a turbulent boundary 
layer and Wygnanski & Fiedler (1970) for a mixing layer. Both groups extended 
the techniques to allow zonal and point averages of the variables to be made and 
were thus able to identify characteristics of purely turbulent and non-turbulent 
fluid in the intermittent region. The replacement of the complicated electronic 
treatment of the signals by digital sampling techniques would appear to be 
a desirable step but it is only fairly recently that this approach has become 
feasible (Kaplan & Laufer 1968; Antonia & Bradshaw 1971). 

I n  principle the essential features of the problem of deciding when a flow can 
be judged turbulent are easily defined but they involve arbitrary and subjective 
decisions. In  previous work the rationale behind these various decisions has 
often not been clear. Our present investigation attempts to explore these 
questions in some detail. On-line digital sampling techniques for the acquisition 
and processing of the data have been used exclusively because of the flexibility 
and power which they afford although the physical interpretation applies equally 
well to analog treatments. 

2. The intermittent motion 
The statistics of the conditional sampling and averaging of an intermittent 

signal are described by Kovasznay et al. (1970). We review here briefly some 
details which are appropriate to our present digital techniques. 

The flow variables in turbulent motion are statistically random quantities. 
To discuss their behaviour in an intermittent region of the flow it is convenient 
to assume that they come from two mutually exdusive populations associated 
with the non-turbulent and turbulent fluid. We consider a typical flow variable 
Q(r, t ) ,  which can represent quantities as widely different as a velocity component 
or the width of a turbulent burst. The continuous measurement of Q(r, t )  during 
an experiment can be considered as one realization from an infinite ensemble. 
To ensure that averages taken over a realization are equivalent to averages over 
the entire ensemble it is necessary that all possible scales of variability be present 
within the sample. This simply means that the record must be long enough to 
include the largest integral scales (Lumley & Panofsky 1964). When this is 
true the experimental realization can be regarded as a sequence of individual 
experiments, each at. least two integral scales in length and each independent 
of the others (Sheih, Tennekes & Lumley 1971). The equivalence of an average 
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taken over these experiments to the true ensemble average is the ergodic 
hypothesis usually adopted. 

In  the evaluation of temporal averages only a single experimental realization 
need be considered. The overall ensemble average is thus 

where N is taken large enough to satisfy some stability criterion. If we now intro- 
duce the indicator function I of Kovasznay et al. to identify the turbulence, so 
that it is unity within the turbulent fluid and zero otherwise, the expected value 
of I is 

This is the turbulent fraction or 'intermittency factor '. 
When evaluating expected values in turbulent and non-turbulent zones, one 

carries out the appropriate conditional averaging as follows. (We have adopted 
the overbar symbolism of Kovasznay et al. for these averages.) In the turbulent 
fluid, 

and in the non-turbulent zones, 

The constraint on these zone averages is simply 

Q(r) = I ( r )  Q"(r) + [i - ~ ( r ) ]  ij(r). 

Conditional average values a t  specific locations with respect to the position of 
the turbulentInSln-turbulent interface can also be defined. Such ensemble means 
are designated &(r)  and are called point averages. 

With the introduction of zonal and point averages, it  becomes necessary to 
place some constraints upon the many possible definitions of the fluctuation 
intensities. For example, if 

- 

d r ,  t )  = Q(r,  t )  - QW, qt@, t )  = Q 0 - 9  t )  - a r ) ,  

qn(r, t )  = Q(r, t )  - CIr.1, 
N h 

q ~ ( r t  t )  = Q(r, t )  -&(rf, 

then the only physically meaningful intensities are those evaluated in the corre 
sponding domains, i.e. 

N 

?(r), %), Z(r), &) (or ( [&(r ,  t )  - &)12)). 

We note that the simple temporal average of say qt(r, t )  is generally non-zero, 
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while the zonal average, by definition, must be 
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The relationship between the mean-square intensity fluctuations is given by 

3. Turbulent/non-turbulent decisions 
3.1. The processing of the signal 

TWO distinctive features of the turbulent fluid are its three-dimensional rota- 
tional nature and the dissipation of mechanical energy into heat through a 
cascade of eddies of diminishing size. The detection of an energy cascade requires 
a spectral analysis and it is difficult to use this in an instantaneous decision for or 
against the presence of turbulence. Rather, vortical fluctuations, which are 
characteristic of the instantaneous local angular momentum, are a more appro- 
priate choice for discrimination. Unfortunately the detection of this signal re- 
quires a complex probe capable of spatial differentiation. The technique has 
been used by Corrsin & Kistler (1955), and most recently by Kibens & Oswald 
(1974). However, the operational difficulties appear to outweigh the advantages 
for most experimentalists. As well, the spatial resolution of such a probe can 
be inherently large and this limits the precision with which the interface may 
be specified. 

Alternatively it is possible to identify the fine-scale structure of the flow 
independently, using a simpler signal such as the velocity fluctuation. A dis- 
advantage is that such a variable is not unique to the turbulent fluid and we 
must sensitize it in some manner to increase its discriminatory capability. The 
method most commonly used is to differentiate or high-pass filter the signal 
and square it thus emphasizing the high frequency components. At this point 
two arbitrary decisions are made. There will be some periods of time when the 
processed signal or detector function will have zeros within fully turbulent fluid 
since its amplitude probability density function is continuous down to the 
origin, although everywhere positive. Such ‘legitimate zeros ’ will influence any 
decision for or against the presence of turbulence. The conventional method of 
eliminating this effect is to smooth or short-term integrate the signal over a small 
period of time q, which produces a criterion function S(r, t ) .  Next it is necessary 
to establish a threshold level C for this criterion function, to discriminate between 
the true turbulence and signal ‘noise’ which will inevitably exist regardless of 
the choice of detector function. Applying the threshold level then produces an 
indicator function satisfying 

~~ 

1 when X(r,t) 2 C, 
0 when S(r, t )  < C. 

I ( r , t )  = 

This random square wave is then carried along with the original signal and used 
to condition the appropriate averages. The procedure is shown schematically 
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FIGURE I .  Schematic diagram of tha generation of the indicator function. 

in figure 1 and the implications of these decisions are discussed in the following 
sections. 

3.2. T h e  detector func t ion  

We choose to examine the above operations by discussing the signal processing 
in terms of the effect upon the basic probability density functions of the detector 
variable. Examples of such variables which have been used previously are given 
in table 1.  For simplicity, we restrict the disoussion now to a single fluctuation 
component q, which could be, for example, the streamwise velocity. Probability 
density functions of this variable have in fact been measured within fully tur- 
bulent fluid by a number of workers (Kuo & Corrsin 1971; Townsend 1948; 
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Townsend (1949) 
Corrsin & Kistler (1955) 
Heskestad (1965) 
Gartshore (1966) 
Fiedler & Head (1966) 
Kaplan & Laufer (1968) 
Wygnanski & Fiedler (1970) 
Kovaszncly et al. (1970) 
Antonia & Bradshaw (1971) 
Sunyach (1971) 
Antonia (1972) 
Thomas (1973) 
Bradshaw & Murlis (1973) 

TABLE 1. Turbulence detector functions 

f ( 4 )  

Non-turbulent 

4 ( a P / w  

FIGURE 2. Hypothetical probability FIGURE 3. The effect of sensitizing on 
density function for the turbulent and 
non -turbulent fluid. 

the probability density function. 

Van Atta & Chen 1970; Sheih et al. 1971). Their results show that the variab e 
itself tends t o  be distributed normally about zero but deviations from this normal 
shape increase progressively with the order of the derivative. 

In  the intermittent fluid, we assume q to have a random distribution of 
amplitude in both the turbulent and non-turbulent domains. The corresponding 
normalized probability density functions are shown qualitatively in figure 2. 
(We ignore here the differences in mean convective flow within the turbulent 
and non-turbulent regions.) This representation is physically acceptable. Within 
the non-turbulent zones, fluctuations in q are of small amplitude whereas within 
the turbulent fluid, a broader distribution of amplitude variation is expected. 
This behaviour is confirmed directly by the recent results of Thomas (1973) 
for a two-dimensional turbulent wake. His data show, however, a marked skew- 
ness in the turbulent zone probability density function, a detail we may ignore 
for purposes of the present discussion. 

The aim of sensitizing q is to accentuate the differences in shape of the corre- 
sponding distributions. For example, if we applied a simultaneous differentiation 
and squaring of q, the effect would be as is shown in figure 3. In  the non-turbulent 
fluid, the probability of (8q/i?t)2 taking a magnitude significantly larger than 
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Non-turbulent n 
S 

FIGURE 4. Criterion function produced by smoothing. 

zero has been reduced relative to that within the turbulent region. We note, 
however, that the probability of ( aq/at)2 having small amplitude fluctuations in 
the turbulent fluid remains non-zero. 

3.3. The smoothing period 

The existence of a large portion of the turbulent probability density function 
in the region close to the origin imposes a fundamental difficulty in making the 
decision for or against turbulence. Ideally we would wish to separate the density 
functions along the horizontal axis and so reduce the overlap. The operation of 
smoothing the signal achieves this and gives the result shown approximately 
in figure 4. The remaining overlap of the distributions, now relatively small, 
represents the probability of making an incorrect statistical choice. 

Bradshaw & Murlis (1973) point out that the diskribution of turbulent burst 
lengths is continuous down to the finest scales of the motion and the imposition 
of an arbitrary hold time must effectively truncate the detection procedure. The 
choice of smoothing period can be based, however, on physical reasoning. If we 
accept a margin or error of the order of the smallest eddies for identifying the 
turbulent burst (certainly a reasonable lower limit), the optimum hold time will 
be of the order of the Kolmogorov length scale divided by the convection velocity 
of the smallest eddies (Townsend 1966; Antonia 1972). We note, however, that 
the practical smoothing period is often considerably greater since it is influenced 
by the resolution of the probe and the sampling time. 

A related problem compounds the difficulty. It is known that, at  high enough 
Reynolds numbers, a degree of spatial localization of the fine-scale turbulent 
structure occurs (Oboukov 1962; Kuo & Corrsin 1971), producing a form of 
spectral intermittency. Results indicate that the domains of this fine structure 
are much larger than the scales of the fine structure itself. The dimensions are 
15-35 times the Kolmogorov length. When using higher-order derivatives as 
a criterion to test for turbulence we weight the fine-scale features of the flow 
and one may in fact be testing for spectral rather than interfacial intermittency. 
It may thus be argued that the practical smoothing period should be no smaller 
than these spectral domains. This is discussed more fully by Bradshaw & Murlis 
(1973). 
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(a) 

S S 

FIGURE 5. Typical probability density FIGURE 6. Cumulative distribution 
function for (a )  P(T)  small and (b )  P(T)  functions with parametric variation of 
large. P(7). 

3.4. The threshold level 

An acceptable choice of the threshold level C could be taken as the value of S 
which equalizes the probabilities of making an incorrect statistical decision in 
the probability density functions for the two regions. This point is shown by the 
shaded areas in figure 4. Unfortunately, the distributions are available only 
a posteriori. The overall density function can be obtained however, and this 
will be the sum of f t ( X )  and f n ( X )  weighted by the appropriate probability: 

f ( S )  = f t ( f i )P ( r )  + f n ( 4  [1 -P(~)1 ,  

where P(r)  is the probability of occurrence of turbulence. With low P(r)  the 
distribution will have the form given in figure 5 (a). At high levels, the function 
will take the shape shown in figure 5 ( b ) .  Because it is experimentally easier to  
determine the integral or cumulative distribution function, we evaluated 

F ( 4  = 1 m f  (@) d@ s 
with the limits chosen so that F ( S )  approaches zero as S approaches infinity. 
A qualitative illustration of F ( X )  with P(r)  as a parameter is shown in figure 6. 

The above distribution function has been used by Corrsin & Kistler (1955), 
Heskestad (1965), Piedler & Head (1966) and others for their detector variables 
in deciding upon threshold levels. Generally, the region of maximum curvature 
was used as a oriterion. This point is well defined a t  low values of P(r)  but with 
high levels of turbulence the choice of threshold level becomes highly questionable. 
Kaplan & Laufer (1968) and Antonia & Bradshaw (1971), with digital methods, 
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used somewhat similar techniques. In  the former, an arbitrary fraction of the 
local maximum of the criterion function was employed while Antonia & Brad- 
shaw took a fraction of the average of the function over the entire record as their 
level. In  both instances, the level actually used was influenced by a visual com- 
parison between the indicator function and the original signal. 

3.5. The distribution of turbulent JEuid 

The contortions of the turbulent front convecting past the probe produce onloff 
periods of turbulence % and non-turbulence T,. The ensemble-averaged values 
(5) and (T,) are in effect large eddy time scales for the motion. At a particular 
threshold setting the distribution function is in these terms 

and depends only upon the relative proportion of turbulent fluid. Clearly, F(C)  
by itself cannot be a sensitive indicator of the structure of the flow since this 
fraction can arise in an infinity of ways. Of more interest is the frequency f A  of 
occurrence of these zones, which is defined as the number of positive (or negative) 
changes in the indicator function I ,  per second. Thus 

fA = [(%) + (%)I-'* 
This variable is particularly sensitive to small changes in both smoothing time 
and threshold level. For this reason we examine the ensemble-averaged periods 
of the turbulent and non-turbulent zones as a basis for choosing the threshold 
level. These are 

(%) = F ( c ) / f A ,  (Tm) = - F ( C ) l / f A ,  
which incorporate information on the average number of zones and the relative 
size F(C)  of the total time periods. 

As an integral function, F ( X )  must naturally decrease monotonically with 
increasing threshold level. The behaviour of fA  is more difficult to predict however. 
Antonia & Bradshaw found that f A  remained relatively unaffected by the 
threshold level over their operating range of S values. As they pointed out, this 
implies that (with repeated scanning of the same record) the total number of 
turbulent bulges remained unchanged. It is probable that the total fraction of 
turbulent fluid continued to change since the widths of the bursts would de- 
orease. In  contrast, our results show a marked variation of fA  with the threshold 
level (see 95.3). Stability with respect to adjusting C was achieved only when 
we examined the average non-turbulent time period (T,). 

4. Experimental considerations 
Experiments were performed on a flat-plate turbulent boundary layer in 

a stream with an approximately zero pressure gradient. The characteristics of 
the flow, details of the experimental facilities and the techniques for digital data 
acquisition and processing of the signals are described fully in the companion 
paper (Hedley & Keffer 1974). 
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Detector function 

Criterion function 

1 
Indicator fu iic t ion 

I) _ _ _ _ _  

FIGURE 7. Typical computer plots of the turbulence variables for 
f = 0.86, y/6 = 0.48. ~ ( t )  = U - ( U ) .  

Generally, when output signals from the transducers are digitized directly 
and processed by computer, a certain perspective is lost. As a check on the 
procedure, sample print-outs of the pseudo-analog signal were constructed from 
the digitized data periodically. These did not contribute in a quantitative way 
to the analysis but functioned similarly to the monitoring of the experiment by 
an oscilloscope. Some typical results for various positions through t.he depth of 
the boundary layer are shown in figures 7-1 1. I n  each, the various stages of the 
sensitizing, smoothing and application of the threshold level can be traced. The 
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FIGURE 10. Computer plots for 7 = 0-51, y/8 = 0.75. 

sampling rate was 
approximately 0.03 s. 

s and the portion of record shown in each figure represents 

5. Experimental results 
5.1. T h e  choice of a detector func t ion  

Because the turbulent field is inherently three-dimensional, it is possible, if 
using only a single fluctuating component, to miss some aspects of the motion. 
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FIGURE 11. Computer plots for 1 = 0.23, y18 = 0.93. 

For this reason it is necessary to choose a basic detector function which in- 
corporates informat.ion from both U and V signals at  least. An obvious possibility 
is the instantaneous Reynolds stress and/or one or more of its derivatives. 
However, our results indicat,e (Hedley & Keffer 1974) that at the leading edges of 
the turbulent zones the Reynolds stress exhibits a lack of definition. One would 
expect of course that the process of sensitizing the signal would improve the 
discrimination. We chose instead a double-component function which involved 
the derivatives of U and V separately. In  finite-difference form this was 

[ ( A u / A T ) ~  + ( A w / A T ) ~ ] .  

To increase the definition of point averages, a second criterion function 

[ ( A 2 ~ / A T 2 ) 2  -I- (A2v/AT2)2] ,  

the derivative of the above, was applied simultaneously, with only a slight 
increase in computer time. 

5.2. Smoothing periods 

The characteristic times for the various small-scale quantities are listed in table 2. 
An obvious constraint on the hold time is that T, could not be less than the 
maximum digital sampling rate, in our case lO-*s. As an initial estimate we used 
the Taylor microscale 

It is pointed out by Bradshaw & Murlis (1973), however, that this is not a suitable 
quantity for examining the smallest scales of the motion. Rather some multiple 
of the Kolmogorov length is more meaningful. For high enough Reynoldsnumbers 
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Convection time across the probe 
Sampling time interval, AT 
Peak of the u spectrum 
Characteristic time, Toh 

Kolmogorov time, l,/o N 0~00001s 

< 0~0001 s 
= 0~0001 s 
N 0.002 s 
< 0~0001 s 

Microscale time, h/U N 0.0005 s 

Smoothing time, T, = 0.0004s 

TABLE 2. Smoothing scales 

( L t P  L 8 P  (Lt)lL* 

Corrsin & Kistler 1.28 0.254 5.05 
Kaplan & Laufer - 0.393 - 

Kovasznay et al. 0.67 0.213 3.14 
Antonia & Bradshaw 0.35 0.044 8.00 
Present study 0.46 0.035 10.54 

TABLE 3. Turbulence indicator function resolution (1 = 0.5) 

we can assume the flow to be locally isotropic, so that h is related to the Kol- 
mogorov scale 1, by 

All, = 153 Re);, 

where Re, is the Reynolds number based on the microscale. 
In  this study All, was approximately 36 while hl( UAT) (for AT = 10-4s) was 

about 5 .  Kuo & Corrsin (1971) suggest that the flow field should be viewed 
through a window with dimensions of the order of 15 to  351,. Additionally, for 
reasonsof symmetry,it is necessary to weight past and futureinput to the smooth- 
ing equally, which merely requires that we use an even number of AT intervals. 
This is essentially a central-difference time-derivative procedure. Within these 
constraints the smoothing window size Ls and smoothing time T, were chosen as 

LJUAT = ClAT = 4.  

I n  terms of the Taylor microscale, Lslh = f , whereas in terms of the Kolmogorov 
length, LslE, = 28, an order of magnitude greater. 

The above choice is a compromise since we now reject all turbulent zones having 
a duration shorter than about the length of the microscale. Coincidently, the 
details of the interface are obscured a t  levels, say, of the Kolmogorov scale. 
We note from table 3 that the level of resolution based on the nominal depth 
of the flow is slightly better than in previous work and the present choice can 
be oonsidered satisfactory. 

When the smoothing period is applied to the detector variables, the resulting 
criterion functions are 

AT2 i = j + T / 2 A T  

S ( r , t j )  = 1 f q/ATi=j-T./ZAT = ( (%)2 + (%)2]; 
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FIGURE 12. Cumulative distribution functions for various y/6. 
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FIGURE 13. Non-dimensional crossing frequency at various y/&. 
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FIGURE 14. Influence of threshold setting for various y/S. 

5.3. Threshold level 

The difficulties in choosing an appropriate setting for the threshold level C have 
been outlined above. An attempt was fist made to use the simple cumulative 
distribution function of S. The set of distribution functions for various positions 
within the boundary layer were evaluated with the results shown in figure 12. 
We have plotted S non-dimensionalized with respect to the constant free-stream 
velocity rather than as a fraction of an average of S since we wished to examine 
absolute changes with respect to y/6. The results are similar to  those found by 
Corrsin & Kistler (1955) and others. Although there is a monotonic decrease in 
F ( S )  with increasing S, a universal sharp break in the slope does not exist for 
all positions within the boundary layer. Close to the wall where the proportion 
of turbulence is high it is not obvious what an acceptable value of C should be 
and this simple approach was thus discarded. 

The average crossing frequency fA was next extracted and is plotted non- 
dimensionally in figure 13. The physical interpretation of these results is in- 
teresting. In  the outer intermittent regions, the raw signal has many low ampli- 
tude, fine-scale features. We can assume this to be noise and it is eliminated by 
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an increase in the threshold level. I n  contrast, in the less intermittent region 
where the proportion of non-turbulent fluid is reduced, increasing C identifies 
a larger number of turbulent bursts as we begin to encounter the structure 
superimposed on the relatively high background level of intensity. Again, dis- 
tinctive changes in the slope of f A  do not exist for all y/S, which precludes this 
being used as a sole criterion to establish C. 

The evaluation of the distribution function of (T!), the non-turbulent zone 
width, was carried out next with the result shown in figure 14. It is seen that, 
regardless of y/6, the functions increase rapidly, then reach a plateau. Clearly, 
a continued increase in X must cause (F,) to rise again as the low intensity 
bulges are eliminated. This was confirmed for a few of the positions but has not 
been included in the general results. We infer from this that the average distance 
between the turbulent bursts has stabilized over a significantly large range of 
threshold levels to enable a simple choice of C. It is not an absolute criterion for 
the turbulence but the existance of a marked plateau with identical break-points 
in the curves for all positions across the boundary layer is encouraging and 
presents a physically acceptable situation for the definition. 

The proper non-dimensionalization of these results poses some difficulties, 
however. For example, Antonia (1972) uses the instantaneous value of (8uv/8t)2 
as his criterion function and takes 0.3 of the overall mean value of this quantity 
as the threshold level. This procedure can be criticized since the overall mean is 
a weighted value and it varies markedly throughout the depth of the flow. 
Alternatively, Bradshaw & Murlis (1973) suggest expressing C in terms of 8 
variable defined within the turbulent zone only. This is certainly an improve- 
ment but results indicate that even these quantities may be expected to change 
with position in the flow. If it  is possible to regard turbulence (or non-turbulence) 
as an absolute state of the fluid in a given flow field, then it follows that a suitably 
chosen threshold level should also be constant everywhere in that flow. An 
absolute specification of C would thus be appropriate. If, however, the existence 
of turbulence is definable only in relative terms, i.e. with respect to a local average 
level of intensity say, it would be necessary to choose a representation similar to  
that of Bradshaw & Murlis. To avoid these questions we have chosen to leave the 
data in absolute terms for the present. 

An appropriate evaluation of the threshold level should actually be made for 
each of the criterion functions S and So. But it is not unreasonable that turbulent- 
fluid time scales would change very little across the outer boundary-layer regions 
and as an approximation, which a posteriori was found to be valid, the ratio 
(S)/(So) was measured in the fully turbulent fluid and used as a characteristic 
time scale ch. The threshold level for the second criterion function co was thus 
taken to be C/T:h, so that 

1 if S > C and/or So > C,, 
0 if S < C and/or So < Co. 

I = {  

Inspection of figures 7-11 shows a good correspondence between periods of 
rapid velocity fluctuation (i.e. turbulence) and proportions of time when the 
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FIGURE 15. Evaluation of cumulative distribution function using various 
detector functions. R, X and 8,; 0 ,  S; .. (au/a6)2. 

indicator function I = 1. Furthermore, the agreement was obtained without any 
visual feedback, that is to say, without adjustment of the threshold level on the 
basis of subjective matching of previously determined traces. 

In  an attempt to assess the quality of our technique we explored the effect of 
altering the basic detector function. Our results showed that, using only the 
streamwise component aulat of the fluctuating velocity the zones of turbulence 
detected would be significantly reduced, i .e. the distribution of the inkermittency 
factor 1 would shift towards the wall. This can be seen in figure 15. As well, the 
crossing frequency f,, was found to increase markedly; see figure 16. The effect 
of using S and So rather than X alone appears rather marginal. As expected, the 
crossing frequency shows the largest effect. From visual inspection of the traces 
we concluded that the interface was more precisely defined by including the 
second derivative and so So was used for all investigations. Ratios of the con- 
ditionally averaged criterion functions, which demonstrate the signal separation 
or ‘noise level’, are shown in figure 17. Bobh and go/S0 are greater than 50 
over most of the intermittent region. This compares favourably with the value 
of 10 from Kovasznay et al. (1970) although the higher Reynolds number for the 
present experiment must be considered partially responsible for the improve- 
ment. Some final evidenoe is shown in figure 18, which is a plot of S across the 
interface position at  two points within the boundary layer. The function shows 
a sharp change in slope and enables a clear distinction to be made between the 
turbulent and the non-turbulent fluid. 
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FIGURE 18. Variation of basic detector function 9 G ( A U ) ~  + ( A V ) ~  across turbulent inter- 
face. 0, upstream edge, f = 0.51; n, upstream edge, f = 0.10; ., downstream edge, 
f = 0.51; m, downstream edge, f = 0-10. 

6.  Discussion 
It is clear that the underlying decisions behind any rationale or algorithm 

for deciding upon turbulence will remain open and that many options are possible. 
Bradshaw & Murlis (1973) have concluded that the best results are produced when 
no smoothing of the signal is used, the signal drop-out being eliminated by thresh- 
old levels applied to the signal and its derivative separately. We have in effect 
combined techniques, retaining the smoothing for both the signal and its 
derivative. Too long a hold time will obviously eliminate interesting, short- 
duration bursts from the signal and this is unacceptable. Spurious bursts, how- 
ever, must be eliminated and in the absence of a perfect detector function, 
smoothing over a prechosen constant small period of time is a valid compromise 
which will not affect the legitimate burst statistics. We need only ensure that the 
window be no greater than the smallest scales of interest and this can be estimated 
from &he known physics of the flow. It becomes clear though that such decisions 
will inevitably be influenced by the spatial scales of the fine structure. We note 
that, with the signal-plus-derivative technique which uses no smoothing, we are 
essentially viewing the flow through a window of variable width, conditioned 
directly by t,he frequency of the turbulent fluctuations. The minimum width of 
this window is effectively determined by the setting of the threshold level of the 
derivative signal. The result is a form of smoothing. 
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It was suggested by Kovasznay et al. (1970) that an iterative procedure could 
be used to  define the threshold level, subsequent estimates being calculated as 
the square root of the product of r.m.9. values in the two fluid states. In  attempting 
this in our present study it was found that convergence did not give physically 
realistic results, and we preferred instead to base the choice on the stability of 
a physical property (the length of the non-turbulent zone), which could be judged 
on other more readily measured dimensions, such as the nominal depth of the 
flow. Bradshaw & Murlis (1973), however, have noted that, when values of the 
criterion or detector functions are determined within the fully turbulent fluid, 
the procedure converges rather rapidly with any reasonable initial guess. The 
high signal-to-noise ratios in our present data (figure 17) indicate that we might 
expect similar results. 
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